
Engineering Ecosystem Models:
Semantics and Pragmatics ?

Tristan Caulfield1, Marius-Constantin Ilau1, and David Pym1,2

1 University College London, UK
2 Institute of Philosophy, University of London, UK

{t.caulfield,marius-constantin.ilau.18,d.pym}@ucl.ac.uk

Abstract. In a world of ever-increasing complexity, the smooth func-
tioning of society is critically dependent on our ability to understand
and manage both individual systems and complex ecosystems of systems.
Models, combined with tools to reason about them, can provide a way to
do this. In order for rigorous reasoning about models to be possible, they
must have a robust mathematical foundation, which must also support
tools for the engineering principles — compositionality, interfaces, and
local reasoning — that are required to enable the practical construction
of models of ecosystems. In this paper, we present a vision for a system
of modelling, based on the concept of distributed systems as a metaphor
for ecosystems of systems, that captures these requirements. We describe
a mathematical foundation, identify the engineering principles needed,
and show how they can be built in a rigorous way that preserves the
ability to reason when dealing with complex, large-scale ecosystem mod-
els. We illustrate our ideas with examples and briefly explain how they
apply in a practical modelling project.

Keywords: distributed systems, ecosystems, modelling, compositionality, in-
terfaces, local reasoning

1 Introduction

The environment we inhabit is constantly increasing in complexity and with this
comes a need for new ways of understanding and thinking about the world that
can manage this complexity.

There is a famous quote from Grace Hopper:

‘Life was simple before World War II. After that, we had systems.’

Now, systems are pervasive. They interact with and depend on each other and
we, in turn, depend on them. It has become important to be able to think about
not just a single system, but also its interactions with other systems — it has
become necessary to think of ecosystems.

? This work has been partially supported by the UK EPSRC research grant
EP/R006865/1.

2 Tristan Caulfield, Marius-Constantin Ilau, and David Pym

Models are a way of understanding and reasoning about the world. There is
a lot of existing modelling technology and practice that is good for capturing
models of individual systems. The necessary shift to the ecosystem view means
that we must consider not just the construction of models of individual systems
but also how they are constructed in order to interact with one another.

Rigorous mathematical reasoning about models is important. In addition to
the usual simulation techniques, it is necessary to be able to reason about models
supports tools such as model checking, formal specification, and correctness and
verification techniques. In order for a system of modelling to support this type
of rigorous reasoning, it must itself have a rigorous mathematical foundation.

Ecosystems are systems of systems or, to put it another way, they are com-
positions of interacting subsystems. Examples include the global financial in-
frastructure of banks and exchanges, transportation networks, cyber-physical
systems such as or workplace IoT networks and semi-automated manufacturing
lines, and distributed databases. Other examples include electricity distribution
networks, package delivery (or any supply chain using GPS and tags), and arti-
ficial organs (smart heart pumps, etc.).

What properties, built on the rigorous mathematical foundations, should a
system of modelling have in order to make it a useful tool for capturing and
reasoning about models of ecosystems?

Two of the first things that are required are systematic accounts of compo-
sition and interfaces. Composition is an important concept because it captures
the structure of systems in the real world, but also because it is a useful tool
for modelling — decomposing a large system or ecosystem into smaller subsys-
tems allows us to manage the complexity of models. Interfaces are essential for
understanding how systems are composed together. They specify what it is that
interacting systems require of each other.

The notions of composition and interface support a range of useful modelling
tools. For example, substitution — replacing one component model with another
— which in turn supports refinement, abstraction, and extension of models.

Another requirement is local reasoning [26, 38, 39, 42, 51], which enables the
specification of the conditions required for models to be composed with one an-
other. The components used in forming compositions are the interfaces between
the models. As such, the conceptual and technical complexity of reasoning about
composite models is controlled. In the absence of local reasoning, actions such
as the substitution of one (possibly small) component model for another might
involve reasoning about the entire ecosystem. In general, such a situation would
be conceptually and technically intractable.

In order to reason about systems, a rigorous mathematical foundation is
required. In order to reason about ecosystems, these concepts of composition,
interface, and local reasoning must build upon this rigorous foundation. With
these three properties and the additional modelling tools they enable, a system
of modelling can support practical and efficient modelling and reasoning about
ecosystems. The question then is, of the ways of thinking about models, which
ones are good ones that provide the substrate for thinking about ecosystems?

Engineering Ecosystem Models: Semantics and Pragmatics 3

Other modelling approaches have tried to support, at least partially, the prop-
erties described above. For example, [13] describes an extension to the UML lan-
guage [46] that facilitates composition using two different strategies — merging
and overwriting, representing variations of the definition of the composition re-
lationship — better to align object-oriented model structures with the structure
of requirement specifications, [19] describes an event algebra for the synchroniza-
tion and composition of labeled transition systems applied to timed automata,
and Alloy [27], can be seen as an attempt at constructing a modelling frame-
work based on rigorous mathematical concepts, but which does not focus on the
composition of large-scale models. Furthermore, general techniques such as [31]
focus on model decompositions that follow a modular approach.

When considering composition for more practical purposes, a particularly
interesting class of modelling tools focused on transformation can be found in
the model driven development literature. Focusing on the Model Transformation
Chains abstraction, [1], practical tools such as MTCFlow or UniTI [50] support
the composition of such chain abstractions and allow therefore the production of
reusable modelling artefacts not only directly, but also through executable code
generation [29].

This shows that composition — both at the level of the languages used to
describe the components of the models and at the level of the construction and
manipulation of the models themselves — is a useful tool in a variety of different
modelling approaches. Here, we seek to present a generic, semantically-rigorous
modelling approach that encompasses these concepts and can be implemented
directly.

Computer science provides the concept of a distributed system (e.g., [16])
as a paradigm that encompasses not only single systems, but also ecosystems
of systems. We propose that a theory of distributed systems models, based on
a rigorous mathematical foundation, can meet these requirements. Thus our
contribution is to capture the inherent semantic structure of ecosystems and
derive appropriate tools for constructing and reasoning about systems — that is,
accounts of interfaces, substitution, and local reasoning — from that structure.

In Section 2, we discuss how we use the distributed systems metaphor as a
basis for modelling systems and their (de)composition. In Section 3, we sketch
the process-algebraic foundation of models and logical tools for reasoning about
them. In Section 4, we explain how we model locations and how this gives rise to
an analysis interfaces, substitution, and local reasoning about components and
(de)composition through reasoning about interfaces.

In Section 5, we discuss a practical example of the deployment of our mod-
elling approach using tools — implemented in the Julia language [28], available
at [8] — that capture our modelling framework (cf. [10, 14]). Specifically, we
consider a model of strategies for device recovery in the aftermath of security
breaches that require the reinstallation of operating systems.

Finally, in Section 6, we discuss what is required to deliver fully our vision
of a modelling framework.

4 Tristan Caulfield, Marius-Constantin Ilau, and David Pym

2 Modelling Distributed Systems

The growth of interconnected networked systems led to the development of the
concept and theory of distributed systems in computer science. This paradigm
views systems as collections of components, in different locations, that work
together to perform some task and communicate by sending information or mes-
sages over network connections.

This view is obviously very specific to its focus on computer systems, but
its concepts can be taken more generally to provide a useful metaphor for un-
derstanding all types of systems and, finally, ecosystems. There are three key
components upon which we draw.

- Location — Distributed systems naturally have a concept of different loca-
tions, which are connected to each other. In the CS view, components are
present at different locations and connected by a network. In the more gen-
eral view, locations can be physical (e.g., a room, a container), logical (e.g.,
an address in computer memory), or abstract (e.g., the location where a
semaphore exists).

- Resource — Resources exist at locations and can move between them ac-
cording to the locations’ connections. In the general view, they can represent
anything: physical objects, people, information.

- Process — Processes execute and manipulate resources as they do so.

These concepts can be used to build a representation of a system’s structure and
operation, but there is one more concept required: the environment in which the
system operates.

- Environment — Environments capture the world outside of the system of
interest and how the two interact.

This generalization provides concepts that can be used to model essentially
any type of system, from physical to logical, or systems that incorporate both.
We note also that these concepts are scale-free — they can be used at any level
of abstraction or representation. However, we have not actually defined what it
means to build a model using this distributed systems approach. This, too, is
very flexible. Models can be largely conceptual, and use the ideas of location,
resource, and process as a means to help think about the structure and behaviour
of a system. Or distributed systems models can be mathematical, as we will
show in the next section. Finally, this metaphor can be used to build executable
models, in the spirit of Birtwistle’s Demos [7], where a programmatic description
of the system (in terms of locations, resources, and processes) is run to simulate
the behaviour of the system [8–10, 14]. An early implementation of these ideas,
Gnosis [14], has been used in significant commercial applications [4–6] derived
from an industry-based research project [22].

The ability to compose models is important for modelling larger systems and
ecosystems. During the modelling process, these systems can be decomposed into
smaller parts, which can be modelled separately and then recombined, and which

Engineering Ecosystem Models: Semantics and Pragmatics 5

Model A Model B Model D

Model C

Composition of
Interfaces

Interface

Location

Environment

Process

Fig. 1. Interfaces, Composition, and Sub-
stitution

P

Q

M1 M2I1 I2

J1 J2M1 M2

N

N

I1 ⇣ J1

<latexit sha1_base64="cuQMiHCZg3SBRexwu/RNXsmzICk=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyWRQuuu4EZdVbAPaEOYTCft0MkkzEyEGvolblwo4tZPceffOG2z0NYDA4dz7uWeOUHCmdKO820VNja3tneKu6W9/YPDsn103FFxKgltk5jHshdgRTkTtK2Z5rSXSIqjgNNuMLme+91HKhWLxYOeJtSL8EiwkBGsjeTb5VvfRQOsplGC7gz17YpTdRZA68TNSQVytHz7azCMSRpRoQnHSvVdJ9FehqVmhNNZaZAqmmAywSPaN1TgiCovWwSfoXOjDFEYS/OERgv190aGI2WiBWYywnqsVr25+J/XT3XY8DImklRTQZaHwpQjHaN5C2jIJCWaTw3BRDKTFZExlpho01XJlOCufnmddC6rbq16dV+rNBt5HUU4hTO4ABfq0IQbaEEbCKTwDK/wZj1ZL9a79bEcLVj5zgn8gfX5A8f1kdw=</latexit>

I2 ⇣ J2

<latexit sha1_base64="tuvrWu1suTwE5jXbiAGy5UC7a00=">AAAB+HicbVDLSsNAFL2pr1ofjbp0M1gEVyUpBeuu4EZdVbAPaEOYTCft0MkkzEyEGvolblwo4tZPceffOG2z0NYDA4dz7uWeOUHCmdKO820VNja3tneKu6W9/YPDsn103FFxKgltk5jHshdgRTkTtK2Z5rSXSIqjgNNuMLme+91HKhWLxYOeJtSL8EiwkBGsjeTb5Vu/hgZYTaME3Rnq2xWn6iyA1ombkwrkaPn212AYkzSiQhOOleq7TqK9DEvNCKez0iBVNMFkgke0b6jAEVVetgg+Q+dGGaIwluYJjRbq740MR8pEC8xkhPVYrXpz8T+vn+qw4WVMJKmmgiwPhSlHOkbzFtCQSUo0nxqCiWQmKyJjLDHRpquSKcFd/fI66dSqbr16dV+vNBt5HUU4hTO4ABcuoQk30II2EEjhGV7hzXqyXqx362M5WrDynRP4A+vzB8sKkd4=</latexit>

Fig. 2. Interfaces and Substitution

helps manage complexity. What does composition look like in the distributed
systems approach?

We start with interfaces. These define, for a model, the locations, resources,
and processes involved in a composition. For a composition of two models to be
valid, the interfaces in both models must match. Figure 1 depicts three models
which compose together. When models with interfaces are not composed, the
environment generates the events expected by the interface; when composed, the
environment is replaced by a model. Also shown is an example of substitution:
Model C can be substituted for Model B as the interfaces of the two models
match; this allows a modeller to refine or increase detail in parts of a larger
model. We give more detail about interfaces and composition in Section 4.

Interfaces and composition seem to support the concept of local naturally.
Obtaining such an account of reasoning requires a mathematical conception of
the distributed systems metaphor on top of which interfaces and composition
can be defined. Milner [36, 37] considers the concept of interface from the point
of view of a quite abstract graphical theory of processes. Our notion is more
directly grounded in the concept of a distributed system, but we conjecture that
the approaches can be understood comparatively. Our approach is more directly
concerned with the logical concept of local reasoning.

3 A Sketch of the Mathematical Foundations

We begin by giving a formal framework for capturing the distributed systems
metaphor that we are proposing as a basis for a semantically and logically well
founded framework for modelling ecosystems of systems in the absence of lo-
cations. The basic theory of processes and their associated logics is technically
essentially determined by the interaction between processes and resources, with
locations playing a significant conceptual rôle only when the model-engineering
concepts of interface, substitution, and local reasoning are considered, which we
do in Section 4. The results presented in this section for states R,E extend to
states L,R,E [14].

6 Tristan Caulfield, Marius-Constantin Ilau, and David Pym

3.1 Processes and Resources

Our starting points are Milner’s synchronous calculus of communicating systems,
SCCS [33] — perhaps the most basic of process calculi, the collection of which
includes also CCS [32], CSP [23], Meije [17], and their derivatives, as well as the
π-calculus [35], bigraphs [36] and their derivatives — and the resource semantics
of bunched logic [20, 40, 42, 43]. The key components for our purposes are the
following:

- A monoid of actions, Act, with a composition ab of elements a and b and
unit 1;

- The following grammar of process terms, E, where a ∈ Act and X denotes
a process variable:

E ::= 0 | a | a : E |
∑
i∈I

Ei | E × E | . . .

Most of the cases here, such as 0, action, action prefix, sum, concurrent product,
and recursion, will seem quite familiar.

Mathematically, this notion of resource — which covers examples such as
space, memory, and money — is based on (ordered, partial, commutative) monoids
(e.g., the non-negative integers with zero, addition, and less-than-or-equals):

- each type of resource is based on a basic set of resource elements,
- resource elements can be combined, and
- resource elements can be compared.

Formally, we consider pre-ordered, partial commutative monoids of resources,
(R, ◦, e,v), where R is the carrier set of resource elements, ◦ is a partial monoid
composition, with unit e, and v is a pre-order on R. The basic idea is that
resources, R, and processes, E, co-evolve,

R,E
a−→ R′, E′,

according to the specification of a partial ‘modification function’, µ : (a,R) 7→ R′,
that determines how an action a evolves E to E′ and R to R′.

The base case of the operational semantics, presented in Plotkin’s SOS style
[41], is given by action prefix and concurrent composition, ×, exploits the monoid
composition, ◦, on resources:

R, a : E
a−→ R′, E′

µ(a,R) = R′ R,E
a−→ R′, E′ S, F

b−→ S′, F ′

R ◦ S,E × F ab−→ R′ ◦ S′, E′ × F ′
.

This (rather general [17,33]) notion of composition at the level of process does not
explain the engineering concept of the composition of models, with its requisite
notions of interface and substitution, that we discuss in the sequel.

Sums, which represented choices, recursion, and other combinators are de-
fined in similar ways.

A modification function is required to satisfy some basic coherence condi-
tions (in certain circumstances, additional structure may be required [2]): for all
actions a and b and all resources R and S, and where ' is Kleene equality,

Engineering Ecosystem Models: Semantics and Pragmatics 7

- µ(1, R) = R, where 1 is the unit action, and
- if µ(a,R), µ(b, S), and R ◦ S are defined, then
µ(ab,R ◦ S) ' µ(a,R) ◦ µ(b, S).

This function specifies the signature of the model.

3.2 Logic

Process calculi such as SCCS, CCS, and others come along with associated modal
logics [21, 34, 47, 48]. Similarly, the calculus sketched here has associated modal
logic, MBI [2, 14,15]. The basic logical judgement is of the form

R,E |= φ,

read as ‘relative to the available resources R, the process E has property φ’.
Building on the ideas of the bunched logic BI (e.g., [20, 40, 42, 43]) and its

application to Separation Logic [26,44], MBI has, the usual additive connectives,
>, ∧, →, ⊥, ∨.

These are all defined by semantic clauses of a satisfaction relation, where V is
an interpretation of propositional letters in the usual way — see, for example, [49]
— beginning as follows:

R,E |= p iff (R,E) ∈ V(p)

In addition, MBI also has a multiplicative conjunction, ∗ ,

R,E |= φ ∗ ψ iff there are S, T and F , G s.t. S ◦ T v R, F ×G ∼ E,
and S, F |= φ and T,E |= ψ

(1)

where ∼ is bisimulation (see, e.g., [33,47,48]) of processes, together with a mul-
tiplicative implication, −−∗. Note that the truth condition for ∗ — sometimes
called a ‘separating conjunction’, since its conjuncts use separate resources —
combines the resources from the truth conditions for its component formulae.

The relationship between truth and action is captured by the clauses of the
satisfaction relation for the (additive) modalities, given essentially as follows
(recall that R′ = µ(a,R)):

R,E |= 〈a〉φ iff there exists E′ s.t. R,E
a−→ R′, E′ and R′, E′ |= φ

R,E |= [a]φ iff for all E′ s.t. R,E
a−→ R′, E′, R′, E′ |= φ

Similarly, in addition to the usual additive quantifiers and modalities, MBI has
multiplicative quantifiers and multiplicative modalities [14,15] (we elide the de-
tails of MBI’s predication).

The basic connection between the process calculus and the logic is given by a
form of van Benthem-Hennessy-Milner theorem that relates process equivalence,
as given by bisimulation, and logical equivalence (e.g., [2, 14, 15, 21, 34, 47, 48]),
for MBI, defined by

R,E ≡MBI R,F iff for all φ, R,E |= φ iff R,F |= φ

8 Tristan Caulfield, Marius-Constantin Ilau, and David Pym

For image-finite processes E and F and any R, [2, 14,15],

R,E ∼ R,F iff R,E ≡MBI R,F (2)

Under stronger assumptions about the nature of resources [2], or with restrictions
to the logic [14], this equivalence can be extended to pairs R,E and S, F of states
with distinct resources.

Logics based on the language of MBI have proved valuable in program anal-
ysis — see the Infer tool [18] — partly by virtue of their deployment of local
reasoning, based on the connective ∗.

4 Ecosystem Modelling and Local Reasoning

As we have discussed, a key component of the distributed systems metaphor that
we propose as a basis for a semantically and logically well-founded framework
for modelling ecosystems of systems is location, logical or physical.

In general, we can identify a few requirements for a useful notion of location
in systems modelling. Specifically,

- a collection of basic locations,
- directed connections between locations,
- a notion of substitution, which respects connections, and
- (optionally) a (monoidal) product of locations (a technical requirement).

In the presence of locations, the judgements for the transition relation for
model states and the associated logical truth, respectively, take the forms

L,R,E
a−→ L′, R′, E′ and L,R,E |= φ,

where the property φ of the process E holds relative to resources R at location
L; that is, if a is an action guarding (the rest of) E, then µ(a, L,R) is defined,
but are otherwise defined similarly as above [2, 14].

4.1 Interfaces

The mathematical structure of models as described above provides the basis for
the class of models that have been implemented in a systems modelling package
[9, 10] for the Julia language. Closely following [9, 10], we describe interfaces
more formally using well-motivated simplifications (that are, in fact, convenient
to implement [10]) of the general semantic set-up [2, 14,15].

Models in this methodology are designed to be composed with other models
(Figure 1). Composition allows two or more models to be combined and the re-
sulting behaviour explored. When models are composed there are interactions at
the location, process, and resource levels, and the role of their intended environ-
ments is critical. Processes evolve (transition) and resources are moved between
models at locations shared between the models. To enable composition, mod-
els need interfaces, which define the locations at which models fit together and

Engineering Ecosystem Models: Semantics and Pragmatics 9

which actions, defined at appropriate locations within the interface, are party
to the composition. Actions in the interface will nevertheless be able to execute
only if the resources they require are available.

The locations and resources of a model are represented using a location graph,
G(V[R], E), with a set of vertices, V, representing the locations of the model, and
a set of directed edges, E , giving the connections between the locations. Vertices
are labelled with resourcesR. Rather than thinking of actions evolving processes,
it is convenient to think of a process as a trace of actions — the history of actions
that have evolved a process during the execution of the model. All of the actions
in a model are contained in a set, A, and process traces are comprised of these.

The environment a model sits inside causes actions within the model to be
executed, at a particular location. A model contains a set of located actions, L,
and a located action, l ∈ L, is given by an ordered pair l = (a ∈ A, v ∈ V).
The environment associates these located actions with probability distributions:
Env : L → ProbDist. During the execution of the model, the located actions
are brought into existence by sampling from these distributions.

Writing I for the set of interfaces on a model, then an interface I ∈ I on a
model is a tuple (In,Out, L) of sets of input and output vertices, where In ⊆ V
and Out ⊆ V, and a set of located actions L ⊆ L. The sets of input vertices and
output vertices in interfaces must be disjoint; that is,⋂

i∈I
Ini ∈ In = ∅ and

⋂
i∈I

Outi ∈ Out = ∅.

Given this set-up, we can define a model as follows:

Definition 1. A model M = (G(V[R], E),A,P,L, I) consists of a location graph
G, a set of actions A, a set of processes P, a set of located actions L, and a set
of interfaces I. (Note that we can still consider the evolution of model states to
be described as above.) �

Our notion of interface is related to Lynch and Tuttle’s input/output au-
tomata [30].

Two models, M1 and M2 are composed using specific interfaces I1,1, . . . , I1,j ,
. . . , I1,n ∈ I1 and I2,1, . . . , I2,k, . . . , I2,m ∈ I2 using the composition operator,
to give M1I1,j |I2,kM2, which is defined using an operation ⊕ on each of the
elements of a model. First, we define the ⊕ operator for vertices and edges,
V1 ⊕ V2 = V1 ∪ V2 and, for each v ∈ V1 ⊕ V2, and then

v[R1 ⊕R2] =

v[R1] if v ∈ V1 ∧ v /∈ V2
v[R2] if v ∈ V2 ∧ v /∈ V1
v[R1 ∪R2] otherwise.

.

Composition of edges, actions, and proceeses are straightforward: E1 ⊕ E2 =
E1 ∪ E2, A1 ⊕A2 = A1 ∪ A2, and P1 ⊕ P2 = P1 ∪ P2.

To define the ⊕ operator for locations and interfaces, we first need to intro-
duce some notation. The interfaces on a model are a set of tuples; for example,
the interfaces of M1: I1 = {(In1, Out1, L1)i}. A particular interface from I1 is

10 Tristan Caulfield, Marius-Constantin Ilau, and David Pym

referred to as I1,i, and the input locations from that interface are referred to as
In1,i, the outputs as Out1,i, and the located actions as L1,i.

When models are composed, the located actions in the interface that were
executed by the environment in the uncomposed model are now executed as a
consequence of the other model instead. As such, the composition of located
actions is the union of both sets of located actions, minus those that are in
interfaces used in the composition: L1 ⊕ L2 = L1 ∪ L2 \ {L1,j , L2,k}.

Interfaces can be used in just one composition, and the input and output
locations of the interfaces from the two models must correspond, so their com-
position is I1⊕I2 = (I1∪I2)\{I1,j , I2,k}, where we require

⋃n
j=1 InI1,j =

⋃m
k=1

OutI2,k and
⋃n

j=1 OutI1,j =
⋃m

k=1 InI2,k . Models must be composed completely:
any location that is in both of the models must belong to the interfaces used in
the composition.

Definition 2. With the data as established above, the composition of models M1

and M2 is given by

M1I1,j |I2,kM2 =(G((V1⊕V2)[R1⊕R2], E1⊕E2),A1⊕A2,P1⊕P2,L1⊕L2, (I1⊕I2))

with the constraint that V1∩V2 = In1,j∪In2,k. (This constraint above represents
a significant design choice in the definition of interfaces.) �

Proposition 1 ([10]). M1I1,j |I2,kM2 is a model. �

Proposition 2 ([10]). For any models M1 and M2, let I1,2 be the subset of in-
terfaces in I1 that compose with M2. Composition of models is commutative and
associative: M1I1,j |I2,kM2 = M2I2,k |I1,jM1 and (M1I1,2 |I2,1M2)I1,3∪I2,3 |I3,1∪I3,2M3

= M1I1,2∪I1,3 |I2,1∪I3,1(M2I2,3 |I3,2M3) �

So far, this definition of interface says little about how a model becomes
animated. How this actually works is that a model is animated when events
occur at its boundaries. As we have seen, models exist within environments
and, as we have remarked, environments are captured within our framework
stochastically. In fact, our treatment of environment — that is, that part of a
model that is not captured in detail, using the distributed systems structure of
locations, resources, and processes — is rather simple.

These issues will be clear by a simple example: the conveyor belt, represented
using the language of our distributed systems modelling metaphor, and explain
how it can decomposed into two component subsystems using an appropriate
choice of interface. Figure 3 depicts a conveyor belt in which resources r are
moved along from right to left, with in and out locations at either end.

The signature for this model, as described by its modification function, can
be specified as follows:

µ(move(r, in, l1), in, r) = (l1, r)
µ(move(r, lk, lk+1), lk, r) = (lk+1, r)

µ(move(r, l5, out), l5, r) = (out, r)
otherwise ↑

where, as usual, ↑ denotes ‘undefined’.

Engineering Ecosystem Models: Semantics and Pragmatics 11

• • • • •• •
out inl1l2l3l4l5

r r r r r rr

Fig. 3. A conveyor belt

• • • • •• •
out inl1l2l3l4l5

r r r r r rr

interface

outin

Fig. 4. A composite conveyor belt

The process-component of the model is then defined, recursively, as follows:

ConBelt ::= (move(r, in, l1) : ConBelt ×move(r, l1, l2) : ConBelt×
. . . ×move(r, l5, out) : ConBelt) + 0

Then the system Ls , Rs , ConBelt, where we right Ls and Rs for the evident
lists of locations and resources, describes the basic operation of a conveyor belt,
as depicted in Figure 3. Either the belt moves with each section in lockstep or
it stops (0 denotes termination).

Consider now a conveyor belt that consists of one belt passing on its items
to another, perhaps because different machines are used to process the items on
different belts. We can use our idea of interfaces to describe how to think of our
ConBelt as the composition of two, component, ConBelts.

The set-up is depicted in Figure 4. Here we can see that the conveyor belt
can be understood as the composition of two such belts, the right-hand one of
which has l3 as it’s out location, which then leads to the in location, l4, of the
right-hand one. The interface consists of the two locations, l3 and l4, together
with their associated data.

4.2 Substitution

As we have briefly discussed, the construction of models of complex systems
may require the substitution of one component model for another; for example,
perhaps, to either increase or reduce the level of detail; or, perhaps, to explore
a quite different design for part of a model; or, perhaps, to replace part of the
environment with a specific model. The typical situation is, more or less, as
depicted in Figure 2: a model N has components M1 and M2 connected by a
model Q. We seek to replace Q with the model P .

12 Tristan Caulfield, Marius-Constantin Ilau, and David Pym

For simplicity, denote the interfaces between M1 and Q and Q and M2 —
formally defined as composites, as above — by J1 and J2, respectively. Similarly,
suppose that P , which replaces Q, has interfaces I1 and I2 to M1 and M2.

For substitution to behave as required, what must we require of P , I1, and I2?
We identify the following requirements: (i) the pairs of substituting and substi-
tuted interfaces should be able to simulate one another; (ii) the distributions of
the events that are incident upon the corresponding boundaries of the interfaces
should be the same, up to choices of parameters. These two conditions together
give us what we need: let DM (L) denote a set of pairs of probability distributions
and locations in a model M . We write d1 � d2 if d1 and d2 are distributions
that are the same up to choices of parameters and extend this notation to sets
DM (L). Then, we require:

- DN (InI1) = DN (InJ1
) and DN (OutI1) = DN (OutJ1

)
- DN (InI2) = DN (InJ2) and DN (OutI2) = DN (OutJ2)
- for i = 1, 2, abusing notation a little, Ii � Ji.

Consider the example of a substitution depicted in Figure 5, in which a
small-scale road map of the roads in and out of a city is replaced by a larger
scale map, which has more detail of the topography of the city. The relevant
interfaces here are simply the points of contact between the roads within the
city and their connections in the environment, together with their associated
probability distributions.

The logic MBI allows us to assert some useful properties. For example, if S
(i.e., some L, R, E) and S ′ (i.e., some L′, R′, E′) denote states (we elide details)
of the smaller and larger scale models, then we can write

S |= φ and S ′ |= φ′

where — writing c for a car, g1, g2, g3 for the three city gates, and t and u for
time periods, all as parameters for actions in the evident way — we can assert
φ = [enterc,g1]> → (〈exitc,g2〉> ∨ 〈exitc,g3〉>) and

φ′ = [enterc,g1](〈parkc,t〉> ∨ 〈gasc,u〉>)→ (〈exitc,g2>〉 ∨ 〈exitc,g3〉>)

Here, just as in the transition from S to S ′, we give greater detail of the properties
that may hold of a city location.

Note that the exit possibilities are not the only such possibilities (e.g., a car
may remain in the town and never leave).

4.3 Local Reasoning

In this section, we introduce the concept of local reasoning, first introduced in
the context of Separation Logic [26, 45, 52]. This conceptual design facilitates
the ability to reason locally about the underlying components of an system or
ecosystem.

Engineering Ecosystem Models: Semantics and Pragmatics 13

parking
gas

negexp(-l1)
negexp(-l2)

negexp(-l3)

negexp(-l1¢)

negexp(-l3¢)

negexp(-l2¢)

Fig. 5. Substitution

…

M1 I1 I2

M = M1 I1
| I2

M2

<latexit sha1_base64="NOCX6yWpdcX/CJFcKcUc4xsqe00=">AAACHnicbVDLSsNAFJ34rPFVdelmtAgupCShoi6Eghu7KFSwD2hCmEyn7dCZJMxMhBLyJW78FTcuFBFc6d84abvQ1jsMHM45l3vvCWJGpbKsb2NpeWV1bb2wYW5ube/sFvf2WzJKBCZNHLFIdAIkCaMhaSqqGOnEgiAeMNIORje53n4gQtIovFfjmHgcDULapxgpTfnFc9M06/Aa1n0bukMZI0xSm/MMppmf1nw7c4/047Tnp+5ZzXcy7XRMv1iyytak4CKwZ6AEZtXwi59uL8IJJ6HCDEnZta1YeSkSimJGMtNNJNGzR2hAuhqGiBPppZPzMniimR7sR0L/UMEJ+7sjRVzKMQ+0kyM1lPNaTv6ndRPVv/RSGsaJIiGeDuonDKoI5lnBHhUEKzbWAGFB9a4QD5FAWOlE8xDs+ZMXQcsp25Xy1V2lVHVmcRTAITgGp8AGF6AKbkEDNAEGj+AZvII348l4Md6Nj6l1yZj1HIA/ZXz9AIfknwo=</latexit>

M2N1 N2

Fig. 6. Interfaces and Local Reasoning

The primary advantage of this is that the properties of an specific component
in a decomposition of a model can be reasoned about without the need to reason
about other components other than in respect of the interfaces to the specific
component. Consequently, modularity (and substitution) are supported, with
the conceptual and computational complexity of reasoning constrained.

With respect to local reasoning, we argue that the combination of the math-
ematical foundations sketched in Section 3 and the conceptual separation of
components, as described above, offers the ability to focus analyses on specific
components and simply state the relevant aspects for intercommunication at the
level of interfaces.

We can identify here a local reasoning principle, or frame rule [26,38,39,42,
51]. We begin by setting up some notation for the states of the various component
models depicted in Figure 6:

- let the model M = M1I1 |I2M2 have state S;

- let the component models (of the composition of interest) Mi have states Si,
respectively;

- let the submodels Ni have states Ui, respectively; and

- let the interfaces Ii have states Ii, respectively.

Now, using ◦ for composition of states, we assume the following, for i = 1, 2:

- Si ∼ Ui ◦ Ii, S a−→ T , and Ii a−→ Ji
- a#Ni\Ii; that is, that the action a is ‘separated from’ that part of the model
Ni that is not coincident with the interface Ii in that the execution of a does
not affect Ni.

Now, suppose that Ui |= φi, for i = 1, 2. Then we have the following frame rule:

J1 |= ψ1 J2 |= ψ2

T |= (φ1 ∗ ψ1) ∗ (ψ2 ∗ φ2)
S a−→ T and Ii a−→ Ji
a#Ni\Ii

This rule is sound with respect to bisimulation equivalence:

Proposition 3 (Soundness of the frame rule). Suppose, for i = 1, 2, Ji ∼
J ′
i , I1 ∼ I ′i, and S ∼ S ′ and T ∼ T ′. Then T ′ |= (φ1 ∗ ψ1) ∗ (ψ2 ∗ φ2).

14 Tristan Caulfield, Marius-Constantin Ilau, and David Pym

Proof sketch. By (2), we have that that, for i = 1, 2, Ui |= φi and Ji |= ψi. Then,
note that separation condition, a#Ni\Ii, and the definition (1) of satisfaction
for ∗ are respected by bisimulation. Finally, further applications of (2) then give
the required conclusion.

To understand how all this works, consider again Figure 5 and suppose we
have a model M for the part of the city that includes the parking and the gas
station. That model is connected by interfaces — here again they are just point-
to-point, respecting stochastic flows — to the rest of the more detailed model of
the city. The facilities of the gas station and their operating capacities, which can
be expressed logically, are properties of M that are independent of the model of
the surrounding city. In this example, these properties correspond to the φis in
the frame rule: separated by the multiplicative conjunction, ∗, they are invariant
under changes to the surrounding model and the interfaces to it when the overall
model evolves. The primary advantage of such a setting is that the modeller can
confidently focus its analysis on a singular model component without the need
to reason about its relationships with other components — the relevant aspects
of intercommunication remain located at the interface level, acting as contracts
that submodels have to fulfill in order for the composition to be possible.

Returning to our example of the conveyor belt, as depicted in Figures 3 and
4, suppose the two component belts are there to support two different sequences
of operations:

- The right-hand belt performs actions op1 and op2 on the resources at loca-
tions l1 and l2, respectively;

- At l3, in the interface, the correct completion of the operations op1 and op2
is verified;

- At l4, in the interface, the readiness of the resources for the operations of
the left-hand belt is verified;

- The left-hand belt performs the operation op5 on the resource at l5.

What can a frame rule say about this situation? First, we give the conveyor
belt a bit more to do. Suppose that at locations l1, l2, and l5, the operations op1,
op2, and op5, respectively, may — provided the machines servicing the belts are
functioning correctly — be performed. Then, using MBI’s modalities, as defined
in Section 3.2,

in , r , move(r, in, l1) : ConBelt |= [move(r, in, l1)] 〈op1〉>

since move(r, in, l1) takes our focus to location l1, at which point op1 may be
performed, and nothing else happens to the resource r until it moves to l2.
Similarly,

l1 , r , move(r, l1, l2) : ConBelt |= [move(r, l1, l2)] 〈op2〉>

These properties hold of that part of the right-hand belt that lies outwith its
interface to the left-hand belt.

Engineering Ecosystem Models: Semantics and Pragmatics 15

A similar logical judgement holds for the left-hand belt:

in , r , move(r, l4, l5) : ConBelt |= [move(r, l4, l5)] 〈op5〉>

Again, this property holds independently of properties of the right-hand belt.
Here we are assuming, for simplicity, that the belt(s) cannot stall or oth-

erwise prevent the passing of resources from one location to the next — such
a possibility would break our separation condition. This assumption, however,
provides a clue to the use of the frame rule.

So far, our discussion of interfaces has been purely at the operational level:
locations, actions, and so on. But the composition of models through interfaces
might also be subject to some requirements that certain properties of the com-
ponent models hold. That is, the composition

M1I1,j |I2,kM2

might be made subject to conditions, following the notational convention set out
above, as follows: I1,j |= φ1,j , for each j and I2,k |= φ2,k, for each k, specifying
the required properties of the output from one model and input to the other.

Within our conveyor belt(s) example, we can set up an example of such a
situation. Let Op1(r) and Op2(r) be propositions that denote that the resource
has received the operations op1 and op2, respectively. Then we may impose the
conditions

- On the output of right-hand belt:

l3 , r , move(r, l3, l4) : ConBelt |= Op1(r) ∧Op2(r)

- On the input to the left-hand belt:

l4 , r , move(r, l4, l5) : ConBelt |= Op1(r) ∧Op2(r)

In order to check that the two conveyor belts can be composed, we need only
check that the resources arriving at l3 have received the operations op1 and op2.
Of course, the left-hand belt may require that the resources it receives also carry
a certification that these operations have been performed. Such a certification
might be delivered as part of a check at l3 and a verification at l4:

- Check: l3 , r , move(r, l3, l4) : ConBelt |= Check(op1, op2)
- Validate: l4 , r , move(r, l4, l5) : ConBelt |= V alidate(op1, op2)

Again, checking these properties would be independent of those parts of the belts
outwith their interfaces.

5 Applying the Framework

Modelling tools based on the framework we have described above have been
deployed in a range of applications that aim to support information security
decision-making such as [10], [9], [11], [12], [24] or [25].

16 Tristan Caulfield, Marius-Constantin Ilau, and David Pym

...

...

...

...

...

...

...

...

Network Model Device Model

Server Model

Desktops

Laptops

Large
Office

Network Endpoints
(Interfaces between models)

Desktops

Laptops

Small
Office

Desktops

Laptops

Small
Office

Laptops

Home

Laptops

Travel

Laptops move
between locations

Server transmits
OS Images when
requested

WiFi

WiFi

WiFi

WiFi

WiFi

LAN

LAN

LAN

Network segments
have different
bandwidth limits

Fig. 7. The Architecture of the Recovery Model

Engineering Ecosystem Models: Semantics and Pragmatics 17

Recently — using tools, implemented in the Julia language [28] and available
at [8], that capture the framework we have described — we have considered the
problem of organizational recovery under ransomware attacks and constructed
a model for exploring different attack scenarios for the purpose of increasing
organizational resilience. This work, has been carried out in collaboration with
industry colleagues, is reported in [3].

Here, we use this problem of organizational recovery to discuss how our
analysis of compositionality and local reasoning can be applied to the models
generated in this work. To discuss the method of application of these ideas in
generality and depth would be a substantial piece of work. For brevity, here
we must restrict our discussion to a short conceptual account of how the above
described notions of interfaces, composition, substitution and local reasoning are
utilized in an implemented model. We begin by presenting an overview of the
model.

The architecture of the organizational recovery model is presented in Fig-
ure 7. The model represents the process of a device becoming compromised by
ransomware and being reinstalled to a fresh state to recover. Devices can use
different methods of recovery: reinstalling from a USB stick, using a recovery
image embedded in the device, or fetching an operating system image over the
network and using that to recover. The model is used to explore different recov-
ery strategies under different types of attack. For example, a quickly-spreading
attack that compromises a large number of devices that use network recovery
might cause a serious delay in recovery because of the bandwidth limitations of
the network; in such a situation, having some embedded recovery devices might
be beneficial as this can reduce the demand on the network.

In Figure 7, it can be seen that the overall model is actually built out of three
separate sub-models: a network model, a server model, and a device model. The
device model represents an organization’s physical architecture and the devices
that may be present in those locations. For example, an organization may be
spread over a number of different physical locations, such as offices, with devices
such as laptops and desktops present in each of those. The physical locations
also may include places such as coffee shops, hotels, and homes, where work
devices may travel to. The movement of devices is included in the model. The
model also includes devices’ connections to the network or internet — network
endpoints are locations in the model that represent a connection to the network,
over a LAN or WiFi connection — and the different methods for recovery.

The server model represents a remote server that responds to devices’ re-
quests for operating system images. When the server receives a request, it trans-
mits an operating system image back to the device that requested it. The server
has a network endpoint that represents its connection to the network.

The network model sits between the device model and the server model. It
defines the network and internet architecture that the devices and server connect
to. The network model also specifies network endpoints, and these correspond to
the network endpoints that are present in the device and server models. These
network endpoints are interfaces between the models. The network model ac-

18 Tristan Caulfield, Marius-Constantin Ilau, and David Pym

cepts network traffic resources placed into the endpoints by transmitting devices,
and delivers them, after a delay, to the receiving network endpoint. The delay is
based on the size of the data, the bandwidth of the different network segments,
and how much other traffic is also being transmitted at the same time.

These three sub-models compose together at the interfaces — the network
endpoints — to become a larger, complete model. In the complete model, when
a device is compromised and initiates recovery over the network, it ‘transmits’
a request for an operating system image to the server over the network. It does
this by moving a resource representing the request into the network endpoint.
The network model waits for such resources to arrive in the endpoints; when one
arrives, it begins the transmission process by calculating the transmission time
(which can vary and is updated based on network utilization by other devices).
When the transmission time has elapsed, the network model delivers the request
resource to the server’s endpoint. The server waits for these requests to arrive
from the network and responds to them by transmitting an operating system
image resource back to the device that requested it over the network using the
same process. When the device receives the image, it completes the recovery
process by installing it.

When considering substitution, two options are possible: substituting a model
with another model or substituting an environment component with a model. For
example, one might consider a single network storage point as too simplistic and
wish to employ a more complex storage model that includes different servers,
load balancing or back-up procedures. In such a case, the modeller can focus
on developing the desired architecture as long as the output network packets
have the same signature as the ones produced by the model to be substituted.
Furthermore, perhaps the modeller considers that additional focus has to be
placed on different types of malware that might affect the organization. In that
case, the environmental process that stochastically triggered malware events can
be developed into a fully structured model and then substitute that part of the
environment.

Furthermore, we describe a plausible scenario for the application of local rea-
soning. Although the original model goal was to illustrate the different recovery
times of different mechanisms and strategies, one might imagine that our model
setting can be used for simulating the impact of different data loss policies. In
that case, the modeller need not worry about having to fully re-implement the
models to target data loss or perform a complete re-validation procedure. Differ-
ent modelling approaches can tend to either take this consistency for granted or
perform time consuming re-validation steps, whereas in our case, the frame rule
described above ensures that the previously considered invariant components
remain invariant as long as they don’t interact with any of the new development
additions.

To see how our approach to compositionality and local reasoning can be ap-
plied to such a setting, let’s consider a stripped down, somewhat abstracted,
version of the composite model. Here, for simplicity, we assume that composed
models — Server–Network and Network–Device — have interfaces that are iden-

Engineering Ecosystem Models: Semantics and Pragmatics 19

tical; that is, in terms of our definition in Section 4.1, this amounts to the inter-
faces from each of the models that are used in a composition being identical in
each model. The simplified composite model is depicted in Figure 8 .

Network DeviceServer

En
dp

oi
nt

 S
, N

En
dp

oi
nt

 N
 ,

D

request

response

request

response

Fig. 8. A Simplified Recovery Model

By way of an example, consider the composition of the device model and
the network model. A device may request an image from the server by send-
ing a request from the endpoint interface for transmission over the network to
the server. The server’s response, including the image, is transmitted over the
network and received at the Endpoint interface, which now holds the image for
receipt by the device:

EndpointN,D
response−→ Endpoint′N,D

The availability of the image that is appropriate for the device can be expressed
by a logical assertion such as

Endpoint′N,D |= ImageX ∧DeviceX

whereX denotes the required OS, so that ImageX denotes a proposition asserting
that an X image is available and DeviceX denotes that the device requires the
X image.

Note that the separation condition, as defined above,

response# Device\EndpointN,D

holds. Consequently, applying the frame rule, we can substitute a different device
model, Device′, provided

Endpoint′N,D′ |= ImageX ∧Device′X

can be verified.
As the examples above and in Section 3 illustrate, the way in which com-

position, substitution, and local reasoning have been defined and supported by
our modelling approach brings a certain set of advantages. Composition ensures
model consistency. Substitution and the use of interfaces offers great flexibility

20 Tristan Caulfield, Marius-Constantin Ilau, and David Pym

while at the same time conserving model consistency. Lastly, local reasoning
offers the confidence to focus model analysis on singular components and abil-
ity to better manage complexity in a timely manner when considering practical
implementation.

6 Discussion and Future Work

We have explained the need for a compositional engineering methodology —
using the ideas of interfaces and substitution — for constructing models of com-
plex ecosystems. Our methodology is mathematically rigorous, itself building
on a rigorous approach to modelling distributed systems, which are seen as a
metaphor for the structure of complex ecosystems.

Models based on the distributed systems metaphor have found significant
application in commercial contexts. As we have described in Section 2, an early
implementation of these ideas, Gnosis [14], formed the basis of the application of
an industry-based modelling project [22] to major clients [5,6]. However, Gnosis
lacks the compositional engineering and reasoning tools that we have proposed
in this paper, with only a very limited model-checker implemented. A compo-
sitional approach for executable models was subsequently developed in [8, 10]
and used in recent, as yet unpublished, work by some of us that has involved
the application of our ideas to resource-allocation problems in hospitals, with
a focus on emergency care and its follow-up. Here, the location-based, modular
approach appears to be particularly valuable, as it allows different clinical de-
partments, which must interact with one another, to be modelled and reasoned
about independently.

While our current tools support the distributed systems modelling framework
that we have described in Section 2, including the notion of interface, for a sys-
tematic approach to the construction of executable models much work remains
to be done to deliver our vision of a fully developed practical methodology:

- tools to support the design and specification of models that support our
theory of interfaces and substitution;

- tools to support logical reasoning — in particular, tools based on model
checking — about models; and

- tools to support local reasoning about the compositional structure of models.

These additions will enable the construction of large-scale models of ecosys-
tems that can be executed and reasoned about. This will allow us to better
represent, understand, and make decisions about the complex systems in the
modern world.

Engineering Ecosystem Models: Semantics and Pragmatics 21

References

1. Camilo Alvarez and Rubby Casallas. Mtc flow: A tool to design, develop and
deploy model transformation chains. In Proceedings of the Workshop on ACa-
deMics Tooling with Eclipse, ACME ’13, New York, NY, USA, 2013. Association
for Computing Machinery.

2. G. Anderson and D.Pym. A calculus and logic of bunched resources and processes.
Theoretical Computer Science, 614:63–96, 2016.

3. Anonymous authors. Modelling Organizational Recovery. Submitted, 2021.

4. Adrian Baldwin, Yolanta Beres, Geoffrey B. Duggan, Marco Casassa Mont, Hilary
Johnson, Chris Middup, and Simon Shiu. Economic methods and decision making
by security professionals. In Schneier B. (eds) Economics of Information Security
and Privacy III. Springer, New York, NY, 2012. 978-1-4614-1981-5.

5. Y. Beres, Jonathan Griffin, S. Shiu, Max Heitman, David Markle, and Peter Ven-
tura. Analysing the performance of security solutions to reduce vulnerability expo-
sure window. 2008 Annual Computer Security Applications Conference (ACSAC),
pages 33–42, 2008.

6. Yolanta Beresnevichiene, D. Pym, and S. Shiu. Decision support for systems se-
curity investment. 2010 IEEE/IFIP Network Operations and Management Sym-
posium Workshops, pages 118–125, 2010.

7. G. Birtwistle. Demos — discrete event modelling on Simula. Macmillan, 1979.

8. T. Caulfield. SysModels Julia Package. Available at Available at https://github.
com/tristanc/SysModels. Accessed 10/05/2021.

9. T. Caulfield and D. Pym. Improving security policy decisions with models. IEEE
Security and Privacy, 13(5):34–41, 2015.

10. T. Caulfield and D. Pym. Modelling and simulating systems security policy. In
Proc. SimuTools, 2015.

11. Tristan Caulfield and Andrew Fielder. Optimizing time allocation for network
defence. Journal of Cybersecurity, 1(1):37–51, 2015.

12. Tristan Caulfield and Simon Parkin. Case study: predicting the impact of a physical
access control intervention. In Proceedings of the 6th Workshop on Socio-Technical
Aspects in Security and Trust, pages 37–46, 2016.

13. Siobhán Clarke. Extending standard uml with model composition semantics. Sci-
ence of Computer Programming, 44(1):71–100, 2002. Special Issue on Unified Mod-
eling Language (UML 2000).

14. M. Collinson, B. Monahan, and D. Pym. A Discipline of Math.Systems Modelling.
College Publns., 2012.

15. M. Collinson and D. Pym. Algebra and logic for resource-based systems modelling.
Math. Structures in Comput. Sci., 19:959–1027, 2009.

16. George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems: Con-
cepts and Design. Addison Wesley; 3rd edition, 2000.

17. R. de Simone. Higher-level synchronising devices in Meije-SCCS. Theor. Comput.
Sci., 37:245–267, 1985.

18. Facebook. Open-sourcing Facebook Infer. Available at https:

//engineering.fb.com/2015/06/11/developer-tools/open-sourcing

-facebook-infer-identify-bugs-before-you-ship/. Accessed 10/05/2021.

19. Elie Fares, Jean-Paul Bodeveix, and Mamoun Filali. Event algebra for transition
systems composition application to timed automata. Acta Informatica, 55:363–400,
August 2018.

https://github.com/tristanc/SysModels
https://github.com/tristanc/SysModels
https://engineering.fb.com/2015/06/11/developer-tools/open-sourcing
https://engineering.fb.com/2015/06/11/developer-tools/open-sourcing
-facebook-infer-identify-bugs-before-you-ship/

22 Tristan Caulfield, Marius-Constantin Ilau, and David Pym

20. D. Galmiche, D. Méry, and D. Pym. The Semantics of BI and Resource Tableaux.
Math. Structures in Comput. Sci., 15:1033–1088, 2005.

21. M. Hennessy and G. Plotkin. On observing nondeterminism and concurrency. In
Proceedings of the 7th ICALP, volume 85 of Lecture Notes in Computer Science,
pages 299–309. Springer-Verlag, 1980.

22. Hewlett-Packard Laboratories. Security Analytics. Available at https://www.hpl.
hp.com/news/2011/oct-dec/security_analytics.html. Accessed 10/05/2021.

23. C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International,
London, 1985.

24. C. Ioannidis, D. Pym, and J. Williams. Information security trade-offs and optimal
patching policies. European Journal of Operational Research, 216(2):434–444, 2011.
doi:10.1016/j.ejor.2011.05.050.

25. C. Ioannidis, D. Pym, and J. Williams. Fixed costs, investment rigidities, and risk
aversion in information security: A utility-theoretic approach. In Bruce Schneier,
editor, Economics of Security and Privacy III. Springer, 2012. Proceedings of the
2011 Workshop on the Economics of Information Security.

26. S.S. Ishtiaq and P. O’Hearn. BI as an assertion language for mutable data struc-
tures. In Proc. POPL, 2001.

27. Daniel Jackson. Alloy: A lightweight object modelling notation. ACM Trans.
Softw. Eng. Methodol., 11(2):256–290, April 2002.

28. julia. http://julialang.org.

29. Anneke Kleppe. Mcc: A model transformation environment. In Arend Rensink and
Jos Warmer, editors, Model Driven Architecture – Foundations and Applications,
pages 173–187, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.

30. Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata.
CWI Quarterly, 2:219–246, 1989.

31. Qin Ma, Pierre Kelsen, and Christian Glodt. A generic model decomposition
technique and its application to the eclipse modeling framework. Softw. Syst.
Model., 14(2):921–952, May 2015.

32. R. Milner. A Calculus of Communicating Systems, volume 92 of LNCS. Springer
Verlag, 1980.

33. R. Milner. Calculi for synchrony and asynchrony. Theor. Comput. Sci., 25(3):267–
310, 1983.

34. R. Milner. Communication and Concurrency. Prentice Hall, New York, 1989.

35. R. Milner. Communicating and mobile systems: the π-calculus. Cambridge Uni-
versity Press, 1999.

36. Robin Milner. Bigraphs as a model for mobile interaction (invited paper). In ICGT
2002, First International Conference on Graph Transformation, volume 2505 of
LNCS, pages 8–13. Springer, 2002.

37. Robin Milner. The Space and Motion of Communicating Agents. Cambridge Uni-
versity Press, 2009.

38. P. O’Hearn. Resources, concurrency, and local reasoning. Theor. Comput. Sci.,
375(1–3):271–307, May 2007.

39. Peter W. O’Hearn, John C. Reynolds, and Hongseok Yang. Local reasoning about
programs that alter data structures. In Proceedings of the 15th International Work-
shop on Computer Science Logic, CSL ’01, page 1–19, Berlin, Heidelberg, 2001.
Springer-Verlag.

40. P.W. O’Hearn and D.J. Pym. The logic of bunched implications. Bulletin of
Symbolic Logic, 5(2):215–244, 1999.

https://www.hpl.hp.com/news/2011/oct-dec/security_analytics.html
https://www.hpl.hp.com/news/2011/oct-dec/security_analytics.html
http://julialang.org

Engineering Ecosystem Models: Semantics and Pragmatics 23

41. G. D. Plotkin. A structural approach to operational semantics. Technical Report
DAIMI FN-19, Computer Science Dept., Aarhus University, Aarhus, Denmark,
1981.

42. David Pym. Resource semantics: Logic as a modelling technology. ACM SIGLOG
News, 6(2):5–41, April 2019.

43. D.J. Pym, P.W. O’Hearn, and H. Yang. Possible Worlds and Resources: The
Semantics of BI. Theor. Comput. Sci., 315(1):257–305, 2004.

44. John Reynolds. Separation logic: A logic for shared mutable data structures. In
Proc. LICS, 2002.

45. John C. Reynolds. Separation logic: A logic for shared mutable data structures. In
Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Science,
LICS ’02, pages 55–74, Washington, DC, USA, 2002. IEEE Computer Society.

46. James Rumbaugh, Ivar Jacobson, and Grady Booch. Unified Modeling Language
Reference Manual, The (2nd Edition). Pearson Higher Education, 2004.

47. Colin Stirling. Modal and Temporal Properties of Processes. Springer Verlag, 2001.
48. Johan van Benthem. Logical Dynamics of Information and Interaction. Cambridge

University Press, 2011.
49. D. van Dalen. Logic and Structure. Springer, Berlin, third edition, 1997.
50. Bert Vanhooff, Dhouha Ayed, Stefan Van Baelen, Wouter Joosen, and Yolande

Berbers. Uniti: A unified transformation infrastructure. In Gregor Engels, Bill
Opdyke, Douglas C. Schmidt, and Frank Weil, editors, Model Driven Engineering
Languages and Systems, pages 31–45, Berlin, Heidelberg, 2007. Springer Berlin
Heidelberg.

51. Hongseok Yang and Peter O’Hearn. A semantic basis for local reasoning. In
Mogens Nielsen and Uffe Engberg, editors, Foundations of Software Science and
Computation Structures, pages 402–416. Springer Berlin Heidelberg, 2002.

52. Hongseok Yang and Peter O’Hearn. A semantic basis for local reasoning. In
Mogens Nielsen and Uffe Engberg, editors, Foundations of Software Science and
Computation Structures, pages 402–416, Berlin, Heidelberg, 2002. Springer Berlin
Heidelberg.

	Engineering Ecosystem Models: Semantics and Pragmatics

